Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Anal Toxicol ; 48(2): 111-118, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38287693

RESUMO

A safe and productive workplace requires a sober workforce, free from substances that impair judgment and concentration. Although drug monitoring programs already exist, the scope and loopholes of standard workplace testing panels are well known, allowing other substances to remain a source of risk. Therefore, a high-throughput urine screening method for psilocin, mitragynine, phencyclidine, ketamine, norketamine and dehydronorketamine was developed and validated in conjunction with a urine and blood confirmation method. There are analytical challenges to overcome with psilocin and mitragynine, particularly when it comes to drug stability and unambiguous identification in authentic specimens. Screening and confirmation methods were validated according to the American National Standards Institute/Academy Standards Board (ANSI/ASB) Standard 036, Standard Practices for Method Validation in Forensic Toxicology. An automated liquid handling system equipped with dispersive pipette extraction tips was utilized for preparing screening samples, whereas an offline solid-phase extraction method was used for confirmation sample preparation. Both methods utilized liquid chromatography-tandem mass spectrometry to achieve limits of detection between 1-5 ng/mL for the screening method and 1 ng/mL for the confirmation method. Automation allows for faster throughput and enhanced quality assurance, which improves turnaround time. Compared to previous in-house methods, specimen volumes were substantially decreased for both blood and urine, which is an advantage when volume is limited. This screening technique is well suited for evaluating large numbers of specimens from those employed in safety-sensitive workforce positions. This method can be utilized by workplace drug testing, human performance and postmortem laboratories seeking robust qualitative screening and confirmation methods for analytes that have traditionally been challenging to routinely analyze.


Assuntos
Ketamina , Psilocibina/análogos & derivados , Alcaloides de Triptamina e Secologanina , Humanos , Fenciclidina , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos
2.
J Forensic Sci ; 69(2): 678-687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38140718

RESUMO

There has been burgeoning interest in psilocybin-use for the treatment of various neurological and neurodegenerative diseases. Psilocybin is mistakenly perceived as the principal pharmacologically active compound due to its high concentrations found in magic mushrooms; however, it is the prodrug of psilocin. Despite the expanding body of clinical research seeking to understand the pharmacodynamic/pharmacokinetic properties of psilocin, and its role in inducing dramatic changes to cognitive function, there has not been a corresponding increase in the development of sensitive analytical methods that can quantify psilocin in different biological fluids. Existing analytical methods have been developed using plasma, serum, and urine as the matrix of choice, but with the unknown blood-to-plasma ratio of psilocin, any pharmacokinetic conclusions drawn solely on plasma data may be misleading. Thus, the main objective of this study is to develop the first analytical method that utilizes SPE and LC-MS/MS to quantify psilocin in human whole blood. The SPE procedure yielded a high recovery efficiency (≥89%) with minimal matrix effects. The method was validated according to ANSI/ASB 036 guidelines. Linearity was between 0.7-200 ng/mL and encompassed previously reported ranges found in plasma/serum. Bias, within- and between-run precision for all quality controls met ANSI/ASB 036 acceptability criteria. Endogenous/exogenous interferences and carryover were negligible. Psilocin stability was assessed at 4°C over 48 h and was considered stable. Although a proof-of-concept study will need to be performed to characterize the method, this analytical workflow was able to detect and quantify psilocin in human whole blood at low limits of quantification.


Assuntos
Psilocibina , Psilocibina/análogos & derivados , Espectrometria de Massas em Tandem , Humanos , Psilocibina/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , 60705
3.
Chembiochem ; 23(13): e202200183, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483009

RESUMO

Psilocybin (1) is the major alkaloid found in psychedelic mushrooms and acts as a prodrug to psilocin (2, 4-hydroxy-N,N-dimethyltryptamine), a potent psychedelic that exerts remarkable alteration of human consciousness. In contrast, the positional isomer bufotenin (7, 5-hydroxy-N,N-dimethyltryptamine) differs significantly in its reported pharmacology. A series of experiments was designed to explore chemical differences between 2 and 7 and specifically to test the hypothesis that the C-4 hydroxy group of 2 significantly influences the observed physical and chemical properties through pseudo-ring formation via an intramolecular hydrogen bond (IMHB). NMR spectroscopy, accompanied by quantum chemical calculations, was employed to compare hydrogen bond behavior in 4- and 5-hydroxylated tryptamines. The results provide evidence for a pseudo-ring in 2 and that sidechain/hydroxyl interactions in 4-hydroxytryptamines influence their oxidation kinetics. We conclude that the propensity to form IMHBs leads to a higher number of uncharged species that easily cross the blood-brain barrier, compared to 7 and other 5-hydroxytryptamines, which cannot form IMHBs. Our work helps understand a fundamental aspect of the pharmacology of 2 and should support efforts to introduce it (via the prodrug 1) as an urgently needed therapeutic against major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Alucinógenos , Pró-Fármacos , Alucinógenos/farmacologia , Humanos , Psilocibina/análogos & derivados , Triptaminas
4.
Psychopharmacology (Berl) ; 239(6): 1689-1703, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35234983

RESUMO

RATIONALE: Ketamine and psilocybin belong to the rapid-acting antidepressants but they also produce psychotomimetic effects including timing distortion. It is currently debatable whether these are essential for their therapeutic actions. As depressed patients report that the "time is dragging," we hypothesized that ketamine and psilocybin-like compounds may produce an opposite effect, i.e., time underestimation, purportedly contributing to their therapeutic properties. OBJECTIVES: Timing was tested following administration of (R)- and (S)-ketamine, and psilocybin, psilocin, and norpsilocin in the discrete-trial temporal discrimination task (TDT) in male rats. Timing related to premature responses, and cognitive and unspecific effects of compounds were tested in the 5-choice serial reaction time task (5-CSRTT) in the standard 1-s, and "easier" 2-s stimulus duration conditions, as well as in the vITI variant promoting impulsive responses. RESULTS: (S)-ketamine (15 but not 3.75 or 7.5 mg/kg) shifted psychometric curve to the right in TDT and reduced premature responses in 5-CSRTT, suggesting expected time underestimation, but it also decreased the accuracy of temporal discrimination and increased response and reward latencies, decreased correct responses, and increased incorrect responses. While (R)-ketamine did not affect timing and produced no unspecific actions, it reduced incorrect responses in TDT and increased accuracy in 5-CSRTT, suggesting pro-cognitive effects. Psilocin and psilocybin produced mainly unspecific effects in both tasks, while norpsilocin showed no effects. CONCLUSIONS: Time underestimation produced by (S)-ketamine could be associated with its antidepressant effects; however, it was accompanied with severe behavioral disruption. We also hypothesize that behavioral disruption produced by psychedelics objectively reflects their psychotomimetic-like actions.


Assuntos
Ketamina , Psilocibina , Animais , Antidepressivos/farmacologia , Cognição , Humanos , Ketamina/farmacologia , Masculino , Psilocibina/análogos & derivados , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Ratos , Serotonina/análogos & derivados
5.
Transl Psychiatry ; 12(1): 77, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197453

RESUMO

Serotonergic psychedelic drugs, such as psilocin (4-hydroxy-N,N-dimethyltryptamine), profoundly alter the quality of consciousness through mechanisms which are incompletely understood. Growing evidence suggests that a single psychedelic experience can positively impact long-term psychological well-being, with relevance for the treatment of psychiatric disorders, including depression. A prominent factor associated with psychiatric disorders is disturbed sleep, and the sleep-wake cycle is implicated in the homeostatic regulation of neuronal activity and synaptic plasticity. However, it remains largely unknown to what extent psychedelic agents directly affect sleep, in terms of both acute arousal and homeostatic sleep regulation. Here, chronic electrophysiological recordings were obtained in mice to track sleep-wake architecture and cortical activity after psilocin injection. Administration of psilocin led to delayed REM sleep onset and reduced NREM sleep maintenance for up to approximately 3 h after dosing, and the acute EEG response was associated primarily with an enhanced oscillation around 4 Hz. No long-term changes in sleep-wake quantity were found. When combined with sleep deprivation, psilocin did not alter the dynamics of homeostatic sleep rebound during the subsequent recovery period, as reflected in both sleep amount and EEG slow-wave activity. However, psilocin decreased the recovery rate of sleep slow-wave activity following sleep deprivation in the local field potentials of electrodes targeting the medial prefrontal and surrounding cortex. It is concluded that psilocin affects both global vigilance state control and local sleep homeostasis, an effect which may be relevant for its antidepressant efficacy.


Assuntos
Eletroencefalografia , Sono , Animais , Encéfalo/fisiologia , Humanos , Camundongos , Psilocibina/análogos & derivados , Sono/fisiologia , Privação do Sono , Vigília
6.
Science ; 375(6579): 403-411, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084960

RESUMO

Drugs that target the human serotonin 2A receptor (5-HT2AR) are used to treat neuropsychiatric diseases; however, many have hallucinogenic effects, hampering their use. Here, we present structures of 5-HT2AR complexed with the psychedelic drugs psilocin (the active metabolite of psilocybin) and d-lysergic acid diethylamide (LSD), as well as the endogenous neurotransmitter serotonin and the nonhallucinogenic psychedelic analog lisuride. Serotonin and psilocin display a second binding mode in addition to the canonical mode, which enabled the design of the psychedelic IHCH-7113 (a substructure of antipsychotic lumateperone) and several 5-HT2AR ß-arrestin-biased agonists that displayed antidepressant-like activity in mice but without hallucinogenic effects. The 5-HT2AR complex structures presented herein and the resulting insights provide a solid foundation for the structure-based design of safe and effective nonhallucinogenic psychedelic analogs with therapeutic effects.


Assuntos
Antidepressivos/farmacologia , Desenho de Fármacos , Alucinógenos/química , Alucinógenos/farmacologia , Receptor 5-HT2A de Serotonina/química , Animais , Antidepressivos/química , Antidepressivos/metabolismo , Arrestina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Alucinações/induzido quimicamente , Alucinógenos/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Ligantes , Lisurida/química , Lisurida/metabolismo , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/metabolismo , Camundongos , Conformação Proteica , Psilocibina/análogos & derivados , Psilocibina/química , Psilocibina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/química , Serotonina/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
7.
Transl Psychiatry ; 11(1): 506, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34601495

RESUMO

Serotonergic psychedelics are recently gaining a lot of attention as a potential treatment of several neuropsychiatric disorders. Broadband desynchronization of EEG activity and disconnection in humans have been repeatedly shown; however, translational data from animals are completely lacking. Therefore, the main aim of our study was to assess the effects of tryptamine and phenethylamine psychedelics (psilocin 4 mg/kg, LSD 0.2 mg/kg, mescaline 100 mg/kg, and DOB 5 mg/kg) on EEG in freely moving rats. A system consisting of 14 cortical EEG electrodes, co-registration of behavioral activity of animals with subsequent analysis only in segments corresponding to behavioral inactivity (resting-state-like EEG) was used in order to reach a high level of translational validity. Analyses of the mean power, topographic brain-mapping, and functional connectivity revealed that all of the psychedelics irrespective of the structural family induced overall and time-dependent global decrease/desynchronization of EEG activity and disconnection within 1-40 Hz. Major changes in activity were localized on the large areas of the frontal and sensorimotor cortex showing some subtle spatial patterns characterizing each substance. A rebound of occipital theta (4-8 Hz) activity was detected at later stages after treatment with mescaline and LSD. Connectivity analyses showed an overall decrease in global connectivity for both the components of cross-spectral and phase-lagged coherence. Since our results show almost identical effects to those known from human EEG/MEG studies, we conclude that our method has robust translational validity.


Assuntos
Dietilamida do Ácido Lisérgico , Mescalina , Animais , Eletroencefalografia , Dietilamida do Ácido Lisérgico/farmacologia , Psilocibina/análogos & derivados , Psilocibina/farmacologia , Ratos
8.
Eur Neuropsychopharmacol ; 50: 121-132, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246868

RESUMO

The emerging novel therapeutic psilocybin produces psychedelic effects via engagement of cerebral serotonergic targets by psilocin (active metabolite). The serotonin 2A receptor critically mediates these effects by altering distributed neural processes that manifest as increased entropy, reduced functional connectivity (FC) within discrete brain networks (i.e., reduced integrity) and increased FC between networks (i.e., reduced segregation). Reduced integrity of the default mode network (DMN) is proposed to play a particularly prominent role in psychedelic phenomenology, including perceived ego-dissolution. Here, we investigate the effects of a psychoactive peroral dose of psilocybin (0.2-0.3 mg/kg) on plasma psilocin level (PPL), subjective drug intensity (SDI) and their association in fifteen healthy individuals. We further evaluate associations between these measures and resting-state FC, measured with functional magnetic resonance imaging, acquired over the course of five hours after psilocybin administration. We show that PPL and SDI correlate negatively with measures of network integrity (including DMN) and segregation, both spatially constrained and unconstrained. We also find that the executive control network and dorsal attention network desegregate, increasing connectivity with other networks and throughout the brain as a function of PPL and SDI. These findings provide direct evidence that psilocin critically shapes the time course and magnitude of changes in the cerebral functional architecture and subjective experience following psilocybin administration. Our findings provide novel insight into the neurobiological mechanisms underlying profound perceptual experiences evoked by this emerging transnosological therapeutic and implicate the expression of network integrity and segregation in the psychedelic experience and consciousness.


Assuntos
Alucinógenos , Psilocibina , Encéfalo , Humanos , Imageamento por Ressonância Magnética , Psilocibina/análogos & derivados , Psilocibina/farmacologia
9.
Chemistry ; 27(47): 12166-12171, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34062028

RESUMO

Psilocin (1) is the dephosphorylated and psychotropic metabolite of the mushroom natural product psilocybin. Oxidation of the phenolic hydroxy group at the C-4 position of 1 results in formation of oligomeric indoloquinoid chromophores responsible for the iconic blueing of bruised psilocybin-producing mushrooms. Based on previous NMR experiments, the hypothesis included that the 5,5'-coupled quinone dimer of 1 was the primary product responsible for the blue color. To test this hypothesis, ring-methylated 1 derivatives were synthesized to provide stable analogs of 1 dimers that could be completely characterized. The chemically oxidized derivatives were spectroscopically analyzed and compared to computationally derived absorbance spectra. Experimental evidence did not support the original hypothesis. Rather, the blue color was shown to stem from the quinoid 7,7'-coupled dimer of 1.


Assuntos
Alucinógenos , Psilocibina , Dimerização , Estresse Oxidativo , Psilocibina/análogos & derivados
10.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672330

RESUMO

Mushroom poisoning has always been a threat to human health. There are a large number of reports about ingestion of poisonous mushrooms every year around the world. It attracts the attention of researchers, especially in the aspects of toxin composition, toxic mechanism and toxin application in poisonous mushroom. Inocybe is a large genus of mushrooms and contains toxic substances including muscarine, psilocybin, psilocin, aeruginascin, lectins and baeocystin. In order to prevent and remedy mushroom poisoning, it is significant to clarify the toxic effects and mechanisms of these bioactive substances. In this review article, we summarize the chemistry, most known toxic effects and mechanisms of major toxic substances in Inocybe mushrooms, especially muscarine, psilocybin and psilocin. Their available toxicity data (different species, different administration routes) published formerly are also summarized. In addition, the treatment and medical application of these toxic substances in Inocybe mushrooms are also discussed. We hope that this review will help understanding of the chemistry and toxicology of Inocybe mushrooms as well as the potential clinical application of its bioactive substances to benefit human beings.


Assuntos
Agaricales/química , Intoxicação Alimentar por Cogumelos/etiologia , Intoxicação Alimentar por Cogumelos/terapia , Agaricales/metabolismo , Agaricales/fisiologia , Animais , Humanos , Lectinas/química , Lectinas/farmacologia , Muscarina/química , Muscarina/envenenamento , Muscarina/toxicidade , Compostos Organofosforados/química , Compostos Organofosforados/toxicidade , Psilocibina/análogos & derivados , Psilocibina/química , Psilocibina/envenenamento , Psilocibina/toxicidade , Triptaminas/química , Triptaminas/toxicidade
11.
J Nat Prod ; 84(4): 1403-1408, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33667102

RESUMO

A novel analogue of psilocybin was produced by hybrid chemoenzymatic synthesis in sufficient quantity to enable bioassay. Utilizing purified 4-hydroxytryptamine kinase from Psilocybe cubensis, chemically synthesized 5-methylpsilocin (2) was enzymatically phosphorylated to provide 5-methylpsilocybin (1). The zwitterionic product was isolated from the enzymatic step with high purity utilizing a solvent-antisolvent precipitation approach. Subsequently, 1 was tested for psychedelic-like activity using the mouse head-twitch response assay, which indicated activity that was more potent than the psychedelic dimethyltryptamine, but less potent than that of psilocybin.


Assuntos
Alucinógenos/síntese química , Psilocibina/síntese química , Triptaminas/síntese química , Animais , Camundongos , Estrutura Molecular , Psilocybe , Psilocibina/análogos & derivados
12.
Artigo em Inglês | MEDLINE | ID: mdl-33485158

RESUMO

Psilocin is the active metabolite of psilocybin, a serotonergic psychedelic substance. It is used recreationally and investigated in substance-assisted psychotherapy. The pharmacokinetic properties of psilocin are only partially characterized. Therefore, we developed and validated a rapid LC-MS/MS method to quantify psilocin and its metabolite 4-hydroxyindole-3-acetic acid (4-HIAA) in human plasma. Plasma samples were processed by protein precipitation using methanol. The injected sample was mixed with water in front of a C18 analytical column to increase retention of the analytes. Psilocin and 4-HIAA were detected by multiple reaction monitoring (MRM) in positive and negative electrospray ionisation mode, respectively. An inter-assay accuracy of 100-109% and precision of ≤8.7% was recorded over three validation runs. The recovery was near to complete (≥94.7%) and importantly, consistent over different concentration levels and plasma batches (CV%: ≤4.1%). The plasma matrix caused negligible ion suppression and endogenous interferences could be separated from the analytes. Psilocin and 4-HIAA plasma samples could be thawed and re-frozen for three cycles, kept at room temperature for 8 h or 1 month at -20 °C without showing degradation (≤10%). The linear range (R ≥ 0.998) of the method covered plasma concentrations observed in humans following a common therapeutic oral dose of 25 mg psilocybin and was therefore able to assess the pharmacokinetics of psilocin and 4-HIAA. The LC-MS/MS method was convenient and reliable for measuring psilocin and 4-HIAA in plasma and will facilitate the clinical development of psilocybin.


Assuntos
Alucinógenos/sangue , Ácido Hidroxi-Indolacético/sangue , Psilocibina/análogos & derivados , Psilocibina/farmacocinética , Administração Oral , Cromatografia Líquida/métodos , Alucinógenos/química , Alucinógenos/farmacocinética , Humanos , Ácido Hidroxi-Indolacético/análogos & derivados , Ácido Hidroxi-Indolacético/química , Ácido Hidroxi-Indolacético/farmacocinética , Modelos Lineares , Psilocibina/administração & dosagem , Psilocibina/sangue , Psilocibina/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
14.
Clin Pharmacol Drug Dev ; 10(1): 78-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32250059

RESUMO

Psilocybin is being developed for treating major depressive disorder. Psilocybin is readily dephosphorylated to psilocin upon absorption. The potential for psilocin proarrhythmic effect was assessed using a concentration-QTc interval (C-QTc) analysis from an open-label single ascending dose study of psilocybin. Psilocybin doses ranged from 0.3 to 0.6 mg/kg. This trial showed a significant but shallow C-QTc relationship. At the clinical dose of 25 mg, the mean psilocin maximum concentration is 18.7 ng/mL, and the associated mean (upper 90% confidence interval of mean) QTcF change is 2.1 (6.6) milliseconds. Given the short half-life of psilocin of about 4 hours, there would be no accumulation after monthly oral doses used in clinical trials. The upper limit of the 90% confidence interval of the model-predicted mean ΔQTcF crossed 10 milliseconds at a psilocin concentration of 31.1 ng/mL. At a supraclinical psilocin maximum concentration of about 60 ng/mL, ΔQTcF remains low, with a mean (upper limit of the 90% confidence interval) of 9.1 (17.9) milliseconds. This analysis enabled the characterization of the C-QTc relationship and prediction of QTc prolongation at the expected clinical and possible higher psilocybin doses.


Assuntos
Alucinógenos/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Psilocibina/análogos & derivados , Psilocibina/administração & dosagem , Adulto , Relação Dose-Resposta a Droga , Eletrocardiografia/efeitos dos fármacos , Feminino , Alucinógenos/efeitos adversos , Alucinógenos/sangue , Alucinógenos/farmacocinética , Voluntários Saudáveis , Humanos , Síndrome do QT Longo/sangue , Masculino , Modelos Biológicos , Psilocibina/efeitos adversos , Psilocibina/sangue , Psilocibina/farmacocinética
15.
J Chromatogr Sci ; 58(10): 985-991, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32945334

RESUMO

The aim of this work was to investigate the applicability of a mathematical model developed for the description of supercritical fluid extraction (SFE) of cannabinoids from marijuana and hashish for liquid extraction of other substances. The mentioned model is applicable for dynamic SFE whose implementation is analogous to liquid-solid extraction in quasi-counter current mode. According to this model, quasi-counter current liquid-solid extractions were designed by calculation of component transport constants for extractions of psilocin from hallucinogenic mushroom, mescaline from hallucinogenic cactus, harmine from tropical lyan and salvinorin A from hallucinogenic sage. The mentioned model was found to be suitable for the determination of extraction time needed to reach a predefined extraction recovery for quasi-counter current liquid-solid extractions, as well, which allows the elimination of systematic error caused by the non-extracted part. The calculated component transport constants predict the expectable velocity of the extraction, i.e., the higher the component transport constant is, the higher the extraction velocity is. For mushrooms, it could be stated that preliminary treatment of mushrooms with liquid nitrogen significantly increases the extractability of psilocin.


Assuntos
Agaricales/química , Cromatografia com Fluido Supercrítico/métodos , Substâncias Controladas/isolamento & purificação , Alucinógenos/isolamento & purificação , Plantas/química , Alcaloides/análise , Alcaloides/isolamento & purificação , Canabinoides/análise , Canabinoides/isolamento & purificação , Cannabis/química , Substâncias Controladas/análise , Alucinógenos/análise , Modelos Químicos , Psilocibina/análogos & derivados , Psilocibina/análise , Psilocibina/isolamento & purificação
16.
J Pharm Biomed Anal ; 190: 113485, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32866746

RESUMO

Development of rapid and reliable immunochemical methods for monitoring psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine; Pyb) and psilocin (dephosphorylated metabolite; Psi), the psychoactive compounds contained within hallucinogenic mushrooms (magic mushrooms), is desirable in order to identify these mushrooms and regulate their illicit use. Because no antibody was publicly available for this purpose, we generated two independent monoclonal antibodies (mAbs) against Pyb or Psi, and then developed enzyme-linked immunosorbent assays (ELISAs) by using them. To generate the specific antibodies, novel immunogenic conjugates were prepared by linking Pyb or Psi molecules to carrier proteins by modifying their 2-(N,N-dimethylamino)ethyl side chains. Spleen cells from mice immunized with these conjugates were fused with P3/NS1/1-Ag4-1 myeloma cells, and hybridoma clones secreting anti-Pyb and anti-Psi mAbs were established. These mAbs were characterized for their biochemical features and then applied to competitive ELISAs, which used microplates coated with Pyb or Psi linked with albumin. These ELISAs enabled the determination of Pyb or Psi with measurable ranges of ca. 0.20-20 or 0.040-2.0 µg/assay (limit of detection was 0.14 or 0.029 µg/assay), respectively. The related tryptamines were satisfactorily discriminated as exemplified by the cross-reactivity of the ELISA to determine Pyb (or Psi) with Psi (or Pyb) that were found to be 2.8 % (or <0.5 %), respectively. The Pyb and Psi contents in a dried powder of the hallucinogenic mushroom, Psilocybe cubensis, were determined to be 0.39 and 0.32 (w/w)%, respectively. The ELISAs developed using the current mAbs are promising tools for identifying illegal hallucinogenic mushrooms.


Assuntos
Agaricales , Alucinógenos , Psilocibina/análogos & derivados , Animais , Alucinógenos/análise , Camundongos , Psilocybe , Psilocibina/análise
17.
J Antibiot (Tokyo) ; 73(10): 679-686, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32398764

RESUMO

Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is an indole-based secondary metabolite produced by numerous species of mushrooms. South American Aztec Indians referred to them as teonanacatl, meaning "god's flesh," and they were used in religious and healing rituals. Spanish missionaries in the 1500s attempted to destroy all records and evidence of the use of these mushrooms. Nevertheless, a 16th century Spanish Franciscan friar and historian mentioned teonanacatl in his extensive writings, intriguing 20th century ethnopharmacologists and leading to a decades-long search for the identity of teonanacatl. Their search ultimately led to a 1957 photo-essay in a popular magazine, describing for the Western world the use of these mushrooms. Specimens were ultimately obtained, and their active principle identified and chemically synthesized. In the past 10-15 years several FDA-approved clinical studies have indicated potential medical value for psilocybin-assisted psychotherapy in treating depression, anxiety, and certain addictions. At present, assuming that the early clinical studies can be validated by larger studies, psilocybin is poised to make a significant impact on treatments available to psychiatric medicine.


Assuntos
Alucinógenos/história , Psilocibina/história , Agaricales/química , Alucinógenos/isolamento & purificação , História do Século XV , História do Século XX , Humanos , Psilocibina/análogos & derivados , Psilocibina/biossíntese , Psilocibina/síntese química , Psilocibina/isolamento & purificação
18.
J Forensic Sci ; 65(5): 1450-1457, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32374425

RESUMO

Psilocin (4-hydroxy-N,N-dimethyltryptamine, 4-HO-DMT) and bufotenine (5-hydroxy-N,N-dimethyltryptamine, 5-HO-DMT), which are both naturally occurring compounds, are classified as controlled substances in numerous countries due to their pharmacological activities and recreational usage. There are two other benzene ring regioisomers, 6-hydroxy-N,N-dimethyltryptamine (6-HO-DMT) and 7-hydroxy-N,N-dimethyltryptamine (7-HO-DMT), which are not classified by name as controlled substances, and which were synthesized for this current work. The four isomers were analyzed using routine methodologies employed by the Israel's Police Division of Identification and Forensic Science (DIFS) Laboratory, namely thin layer chromatography (TLC), Fourier transform infrared spectroscopy (FTIR), and gas chromatography mass spectroscopy (GC-MS). It was found possible to differentiate the four isomers. Forensic specimens that were suspected to be psilocybe mushrooms were examined, confirming that it is now possible to unequivocally identify the presence of psilocin and rule out the presence of its other isomers.


Assuntos
Bufotenina/química , Isomerismo , Psilocybe/química , Psilocibina/análogos & derivados , Cromatografia em Camada Delgada , Toxicologia Forense , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Drogas Ilícitas , Psilocibina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Transtornos Relacionados ao Uso de Substâncias
19.
Metab Eng ; 60: 25-36, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32224264

RESUMO

Psilocybin is a tryptamine-derived psychoactive alkaloid found mainly in the fungal genus Psilocybe, among others, and is the active ingredient in so-called "magic mushrooms". Although its notoriety originates from its psychotropic properties and popular use as a recreational drug, clinical trials have recently recognized psilocybin as a promising candidate for the treatment of various psychological and neurological afflictions. In this work, we demonstrate the de novo biosynthetic production of psilocybin and related tryptamine derivatives in Saccharomyces cerevisiae by expression of a heterologous biosynthesis pathway sourced from Psilocybe cubensis. Additionally, we achieve improved product titers by supplementing the pathway with a novel cytochrome P450 reductase from P. cubensis. Further rational engineering resulted in a final production strain producing 627 ± 140 mg/L of psilocybin and 580 ± 276 mg/L of the dephosphorylated degradation product psilocin in triplicate controlled fed-batch fermentations in minimal synthetic media. Pathway intermediates baeocystin, nor norbaeocystin as well the dephosphorylated baeocystin degradation product norpsilocin were also detected in strains engineered for psilocybin production. We also demonstrate the biosynthetic production of natural tryptamine derivative aeruginascin as well as the production of a new-to-nature tryptamine derivative N-acetyl-4-hydroxytryptamine. These results lay the foundation for the biotechnological production of psilocybin in a controlled environment for pharmaceutical applications, and provide a starting point for the biosynthetic production of other tryptamine derivatives of therapeutic relevance.


Assuntos
Engenharia Metabólica/métodos , Psilocibina/análogos & derivados , Psilocibina/biossíntese , Saccharomyces cerevisiae/metabolismo , Triptaminas/biossíntese , Escherichia coli/metabolismo , Fermentação , NADPH-Ferri-Hemoproteína Redutase/biossíntese , NADPH-Ferri-Hemoproteína Redutase/genética , Psilocybe/genética , Psilocybe/metabolismo , Psilocibina/metabolismo , Triptofano/metabolismo
20.
Molecules ; 25(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235328

RESUMO

The fully automated system of single drop microextraction coupled with capillary electrophoresis (SDME-CE) was developed for in-line preconcentration and determination of muscimol (MUS) and psilocin (PSC) from urine samples. Those two analytes are characteristic active metabolites of Amanita and Psilocybe mushrooms, evoking visual and auditory hallucinations. Study analytes were selectively extracted from the donor phase (urine samples, pH 4) into the organic phase (a drop of octanol layer), and re-extracted to the acidic acceptor (background electrolyte, BGE), consisting of 25 mM phosphate buffer (pH 3). The optimized conditions for the extraction procedure of a 200 µL urine sample allowed us to obtain more than a 170-fold enrichment effect. The calibration curves were linear in the range of 0.05-50 mg L-1, with the correlation coefficients from 0.9911 to 0.9992. The limit of detections was determined by spiking blank urine samples with appropriate standards, i.e., 0.004 mg L-1 for PSC and 0.016 mg L-1 for MUS, respectively. The limits of quantification varied from 0.014 mg L-1 for PSC and 0.045 mg L-1 for MUS. The developed method practically eliminated the sample clean-up step, which was limited only to simple dilution (1:1, v/v) and pH adjustment.


Assuntos
Amanita/química , Alucinógenos/urina , Microextração em Fase Líquida/métodos , Muscimol/urina , Psilocybe/química , Psilocibina/análogos & derivados , Calibragem , Eletroforese Capilar , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Psilocibina/urina , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...